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Self-organizing dynamics of coupled map systems
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We show that the feedback from the macroscopic dynamics of a system of coupled units can synchronize the
dynamics of these units. We studied the dynamics of maps coupled through their variables and control param-
eters. The feedback adjusted the values of the parameters of each map by using a function that depended on the
difference between the Liapunov exponent of each unit and the Liapunov exponent of the mean field of the
system. We showed that synchronization of the maps can be achieved under two different conditions:~1! where
the maps interact autonomously without a fixed controlling map and~2! where the maps interact nonauto-
mously with a single controlling map with fixed parameters. This method of feedback control may be useful in
controlling more general types of parallel distributed systems.@S1063-651X~99!01303-3#

PACS number~s!: 05.45.Ra, 64.60.Cn
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I. INTRODUCTION

Collective dynamics of self-organizing systems, whi
are formed as large ensembles of coupled units, have b
studied widely ~for example, see@1,2# and references
therein!. One of the major problems in such self-organizi
systems is how the dynamics and interactions between m
spatially distributed units synchronize to form large-sc
spatiotemporal patterns. Such synchronized behavior
been studied in many theoretical systems such as system
coupled maps, Lorenz equations, oscillators@3,4#, coupled
laser systems@5# and neural networks@6–8#. Understanding
the mechanisms that underlie such synchronization may
to understand the spatiotemporal synchronization that
been found in the sensory cortex@9,10# and olfactory bulb
@11#. It has been speculated that the synchronized activit
the brain is related to the binding problem, that is, the link
together of percepts that are processed in different part
the brain.

These issues of synchronization in spatially distribu
systems have been studied in systems of coupled maps w
consist of interacting units whose variables are iterated
ward in time. These systems were introduced by Kan
@12,13#, and have attracted rapidly growing attention in r
cent years@14–18#. They can generate spatiotemporal ph
nomena such as solitons, freezed random configurations
riodic behavior, intermittency, or chaos@19#. They have been
used to model spatiotemporal intermittency in Rayleig
Benard convection@20# and spiral waves in the Biełousow
Żabotiński reaction@21#.

It is not clear, however, how synchronization of syste
can be achieved when the dynamical properties of the u
in the system are not identical and can adjust in time
accommodate self-organizing processes. We present he
model that shows that coupling the dynamics of a single u

*Permanent address: Centrum Fizyki Teoretycznej PAN, Al. L
ników 32/46, 02-784 Warsaw, Poland.
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of the system to the mean signal arriving from other un
and employing two readout mechanisms on the receiv
unit can produce such self-organizing behavior. The fi
readout mechanism is a fast coupling of the iterates of
receiving unit to the averaged signal coming from oth
units. It is a fast mechanism because it produces insta
neous changes in the receiving unit based on the spat
averaged activity of the other elements in the system. T
second readout mechanism is a much slower mechan
which is designed to integrate, in time, some property of
incoming signal and induce slow changes in themacroscopic
dynamical properties of the receiving element. The inter
tion of these two mechanisms produces self-organization
the coupled system.

The results presented in our paper can be used in in
mation theory and also may have an application in mode
brain function. In the brain it is found@22# that the activity of
the neurons maybe modulated by slower acting channels
resulting ion density within a cell~for example, me-
tabathiphic receptors or by altering the Ca21 concentration
that regulates ion channel activity!. This would correspond to
implementation of the slow readout mechanism. Change
ion concentrations on a large time scale~of the order of tens
or hundreds of milliseconds! may lead to changes in dynam
cal properties of the cells and thus to a changed patter
neuronal spike firing—the short time scale~of the order of
milliseconds! dynamics. The fast readout mechanism can
viewed as implemented by the channels reacting rapidly
the release on a neurotransmitter on the synapse and
producing fast changes in the postsynaptic potential.
amples of such channels are acetylcholine receptors, w
produce rapid influx of Na1 ions during depolarization, o
GABA receptors, which produce influx of Cl2 during the
hyperpolarization. The interactions of the action potenti
may in turn lead to the formation of the synchronized act
ity of the firing of many neurons.

The system studied here consists of logistic maps.
terms of coupled maps, the dynamical properties of each
depend on a parameter, which may be different for differ

-
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units. The question then becomes, how can the paramete
these units be equalized to produce the same dynamica
havior? Depending on the value of the parameter, the
namics of one map may be periodic, whereas the dynam
of the other map may be chaotic.

The maps were coupled together by having the variab
of one map depend on the variables of the other maps.
iterations of the maps and the dependency of the variable
each map on the other maps form the fast time scale in
system. We additionally coupled the maps by having
parameter of each map depend on a function of the varia
of the other maps. We determined the changes in the valu
the parameter of each map by computing the difference
tween the Liapunov exponent estimated from the iteration
time of that map and the Liapunov exponent estimated fr
the average of the variables of the other maps iterate
time. Essentially, this means that the dynamics of each m
as determined by its parameter, is controlled by the ma
scopic dynamical properties of the other maps, which
evaluated from their signal. This defines a slower time sc
at which the characteristic of each map responds to the o
all dynamics of the system. It is worth stressing that in t
system units are coupled effectively by one coupling wh
transmits the value of the iterate at given time step. The
at the receiving end integrates different properties of t
signal over different time scales and incorporates it into t
different driving mechanisms.

We studied the synchronization produced by this coupl
in ~1! a system with autonomously interacting maps witho
a fixed controlling map and~2! a system with nonautomousl
interacting maps driven by a controlling map with fixed p
rameters. In both cases, even though the units start with
ferent dynamical properties, as determined by their par
eters~ranging from periodic to chaotic!, these systems reac
stable synchronized patterns. In the second case, the con
ling map can also determine the properties of the pattern

Controlling the dynamics of a chaotic system is presen
a very active line of research and has wide applications
different branches of science. Ott, Grebogi, and Yo
~OGY! @23# showed how one can achieve chaotic control
using a feedback mechanism acting on the control par
eters of the system. Other aspects of control were stu
earlier in low-dimensional systems@24–26#, where the per-
turbed system is driven to a fixed-point orbit. Since the m
to be controlled can have chaotic dynamics, the work p
sented here provides a new approach to controlling a cha
system.

In our previous work@27# we studied how synchroniza
tion depends on the feedback between the variables and
parameters of the units and showed how one map can
used to control another map@27#. We now extend that
method of control to many interacting maps.

II. DESCRIPTION OF THE MODEL

The system we studied consists ofN550 units, each of
which is a logistic map. The dynamical properties of ea
map are determined by its parameterr ( i ), which initially may
be different for each mapi. The variable of each mapx( i ) is
iterated forward to time stepn11 by
of
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xn11
~ i ! 5 f i~r n

~ i ! ,xn
~ i !!5r n

~ i !xn
~ i !~12xn

~ i !!, ~1!

wherexP@0,1# and r P@0,4#.
The motivation for the following coupling is to make th

dynamics of each map depend on its internal dynamics
on the input from the average state of the rest of the ma

xn11
~ i ! 5

f i~r n
~ i ! ,xn

~ i !!1@a1 /~N21!# (
j , j Þ i

f j~r n
~ j ! ,xn

~ j !!

11a1
,

~2!

where a1 indicates the strength of the interaction betwe
each map and the rest of the system, which is the same fo
the maps; the simulations described in the next section w
performed fora150.6.

The state of the map in the next time step is thus dep
dent on its previous state and the average state of the re
the maps. The value of the iterate at the given site is t
normalized not to exceed 1. Single units act here as an i
grator of the dynamics of whole system, and its evolution
a function of its own state and the state of other element
the system. This maybe viewed as an approximation o
neuron, where the cell acts as an integrator of the depola
ing and hyperpolarizing changes in potential, which are d
to changes in ionic density.

We will show that when the parameter of a single map
coupled to the difference of the estimated Liapunov ex
nents between the mean field of the variables of other m
and the map itself, the maps can adjust their parameters
then fully synchronize.

The two variablesr n
( j ) and xn

( j ) evolve at different time
scales. The parametersr n

( j ) evolve much slower than the var
ables xn

( j ) . The Liapunov exponents computed from ea
map and the mean field depend primarily onxn

( j ) . Thus, the
slowly varying value ofr does not effect the computation o
the Liapunov exponents.

The Liapunov exponent for each map is computed fr
the iterations of that mapx̃(s) uncoupled from the othe
maps. That is, it is based on the evolution of

x̃n11
~s! 5r n

~s!xn
~s!~12xn

~s!!. ~3!

The Liapunov exponent is given by

l~s!~ i !5 lim
N→`

1

N (
j 51

N

lnUd fi

dx
~ r̄ ~ i !,x̃ j

~ i !!U. ~4!

The mean fieldhn11
( i ) at time stepn is given by

hn
~ i !5

1

N21 (
j , j Þ i

f j~r n
~ j ! ,xn

~ j !!. ~5!

The Liapunov exponent for the mean field is given by

l~m f!~ i !5 lim
N→`

1

N (
j 51

N

lnUd fi

dx
~ r̄ ~ i !,hj

~ i !!U. ~6!

We approximate the Liapunov exponents for each m
and the mean field by using the running sum
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ln11
~ i ! 5

ln
~ i !1a2 lnud fi /dxu

11a2
. ~7!

a250.02 was set during the simulations. We then define
function A used to control the dynamics ofr as

A~ln
~s!~ i ! ,ln

~m f!~ i !!5~ uln
~s!~ i !2ln

~m f!~ i !u!1/4

3sgn~ln
~s!~ i !2ln

~m f!~ i !!. ~8!

The function A(ln
(s)( i ) ,ln

(m f)( i )) could have different
forms. We chose the shape of this function to ensure
there are large changes inA for small differences betwee
ln

(s) and ln
(m f) and small changes inA for large differences

betweenln
(s) andln

(m f) . This ensures that the parameters
the map change when the map is not synchronized to
mean field, but the changes are kept small when it is too
out of synchronization to prevent excessive overshooting
the parameter required for synchronization.

The control method adjusts the parameter of each ma
the following:

r n11
~ i ! 5r n

~ i !1gA~ln
~s!~ i ! ,ln

~m f!~ i !!, ~9!

whereg is a constant much less than unity. During the sim
lationsg50.000 04.

Additionally, when the parameter of any element i
creased to the valuer ( i )>4.0 it was reinjected at the low en
value of r ( i )53.1, and conversely, if the parameter of a
element decreasedr ( i )<3.0, it was reinjected at the value o
r ( i )53.98.

This definition of fast and slow detection mechanisms
the system allows a large separation of the time scales.
first mechanism is an instantaneous reaction of a given
to the actions of the others. The second one acts as a te
ral integrator of the dynamical properties of the system. T
the same signal integrated on different time scales can a
a driving signal and as a control mechanism.

III. RESULTS

We studied the behavior of this system for two cases:~1!
autonomously interacting maps without a fixed controlli
map and~2! nonautonomously interacting maps driven
one controlling map with fixed parameters. In both cas
even though the maps start with different parameters
thus different dynamical properties~ranging from periodic to
chaotic!, the maps reach stable synchronized patterns. In
second case, the controlling map determined the prope
of the pattern.

A. Autonomously interacting maps

In the first set of simulations, there were 50 maps coup
to each other, but no controlling map with fixed paramete
The initial values of the variables and parameters were c
sen from a uniform distribution over their ranges. Figure
shows the evolution of the mean value of the parameter
all the maps. This mean value fluctuated at the beginning
then changed slowly over time. The fluctuations in the p
tern were measured bySn , the standard deviation from th
mean value of the averaged iterate.
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Figure 2 shows thatSn decreased rapidly in time, indicat
ing that the maps quickly evolved toward a synchroniz
state. Thus, when there is no external control, the maps c
verged to the averaged dynamical state of the system
whole.

We also tested the behavior of the model adding differ
amounts of noise into the system. The equations took
form

FIG. 1. Autonomous coupled maps~without a controlling map!.
Evolution in time of the mean value of the parameters of the ma
As the ~50! maps synchronize, the mean value stabilizes and t
drifts only slowly over time. The initial values of the iterates an
parameters were picked at random,a150.6, a250.02, g
50.000 04.

FIG. 2. Autonomous coupled maps~without a controlling map!.
Evolution in time of the standard deviation from the mean value
the iterate. The difference decreases rapidly in time indicating
the maps quickly evolve toward synchronized behavior. These
sults are recorded from the same trial as Fig. 1.
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xn11
~ i ! 5

f i~r n
~ i ! ,xn

~ i !!1@a1 /~N21!# (
j , j Þ i

f j~r n
~ j ! ,xn

~ j !!1« j

11a1
,

~10!

where « i are random variables. This way of incorporatin
noise in the system should be viewed as noise in coup
between the units, rather then as noise in the units th
selves. These results are presented in Figs. 3 and 4.

FIG. 3. Behavior of the autonomous maps in the presence
noise. The evolution of the mean value of the parameter is
sented. The system is dominated by noise and the parameter
lizes at the periodic/chaotic transition point. The transition poin
lower than for noiseless system as expected. The amplitud
noise,anoise50.01. Other parameters are as in Fig. 1.

FIG. 4. Behavior of the autonomous maps in the presence
noise. Presents the evolution of standard deviation from the m
value of the iterate. The elements do not synchronize fully. Th
results are recorded from the same trial as Fig. 3.
g
-

he

degree of synchronization is less with a higher amplitude
noise. With the addition of noise, the system tends to s
chronize on a less complex trajectory~one with the smaller
Liapunov exponent!. When the noise level is high~noise
amplitudeanoise50.01) the system always stabilizes at t
transition point from periodic to chaotic regime. This is d
to the fact that foranoise50.01 the system dynamics starts
be dominated by noise and the Liapunov exponent tend
zero, which is the value at the transition point.

B. Nonautonomously interacting maps driven
by one controlling map

In the second set of simulations, there were 50 m
coupled to each other and to one control map with a fix
parameter. The initial values of the variables and parame
~of the autonomous maps! were again chosen at random fro
a uniform distribution over their ranges. The control m
represents a stable external input or forcing into the syst
These simulations explored the ability of the controlling m
to synchronize the dynamics of the entire system on a s
cific trajectory. We found that the controlling map could sy
chronize the system only over certain ranges of its param
and that this control was also sometimes intermittent.

When the parameter value of the control maps is set
low the value that defines transition from periodic to chao
behavior r (c),3.56 the maps with unconstrained behav
can synchronize between themselves but cannot synchro
with the control map. Those results are presented for the c
when r (c)53.4 in Figs. 5 and 6. Figure 5 presents the ev
lution of mean value of the parameter, while Fig. 6 shows
changes of standard deviation from the mean value of
iterates. The mean value of the parameter of the unc
strained maps stabilizes around the periodic/chaotic reg
transition point. This is due to the fact that below the tran
tion value the Liapunov exponent stops being a monoto
function of the parameter (r ( i )) for the elements. The above

of
e-
bi-

s
of

of
an
e

FIG. 5. Nonautonomous coupled maps with one controlling m
with fixed parameterr (c)53.4. Evolution in time of the mean valu
of the parameters of the maps. The parameter converges to
chaotic/periodic dynamics transition point.a150.6, g50.000 04.
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mentioned limit applies, however, only to the values of t
parameter of the control map. The parameter values for
constrained maps can take any value. Within the perio
regime the largest value of the Liapunov exponent takes
value of zero at the bifurcation points which is smaller th
any positive value of the exponent in the chaotic regim
Thus the control scheme is working properly.

When the parameter of the control map was larger t
the transition value and belowr (c)<3.76, the maps synchro
nized with each other, adjusted their parameter values to
control map, and synchronized with it. Figure 7 shows
sults of the simulation for this case. The value of the con
parameter was set tor (c)53.75. The mean value of the pa
rameters of the maps approached a nearly constant v
equal to that of the parameter of the control map. Figur
shows that the standard deviation decreased rapidly in t
indicating that the maps are synchronized.

The parameter range for which system could be eff
tively controlled and synchronized depended on the value
g—the constant determining the size of the changes ofr ( i ).
With a smaller gamma the mean value of the paramete
autonomous maps converged slower tor (c) , but the range of
the values for which it converged was substantially
creased. Figure 9 presents the evolution of the mean pa
eter for three different values ofg. The parameter value o
the control map was set tor (c)53.65. Forg50.000 04 the
system converges to the value of the control parameter.
g50.0004 the system also converges to the value of
control parameter but fluctuates around it noticeably. Fog
50.004 the system does not converge and stabilizes at s
random value. This maybe due to the fact that the con
parameter is overshot for many elements repeatedly, and
to the fact that the approximation of the Liapunov expon
may start to fail due to the faster changes in the param
value.

FIG. 6. Nonautonomous coupled maps with one controlling m
with fixed parameterr (c)53.4. Evolution of the standard deviatio
from the mean value of the iterate. The standard deviation tend
zero—the maps synchronize. These results are recorded from
same trial as Fig. 5.
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We also tested whether the model can adjust its final s
to the changes in the external stimulus. Those changes w
induced by changing the parameter value of the control m
during the simulation. The parameter of the control map w
changed every 30 000 iterations fromr (c)53.6 to r (c)
53.75 with a step of 0.05. The system follows the chang
of the parameter the control map. The convergence, h
ever, becomes slower with larger values of the control
rameter ~Fig. 10!. As the parameter of the control ma

p

to
the

FIG. 7. Nonautonomous coupled maps with one controlling m
with fixed parameterr (c)53.75. Evolution in time of the mean
value of the parameters of the maps. The mean value of the pa
eter converges to that of the control map.a150.6, g50.000 04.

FIG. 8. Nonautonomous coupled maps with one controlling m
with fixed parameterr (c)53.75. Evolution of the standard deviatio
from the mean value of the iterate. The standard deviation tend
zero—the maps synchronize. These results are recorded from
same trial as Fig. 7. The inset magnifies the part of the main pict
a150.6, g50.000 04.
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changes the units desynchronize briefly but then quickly s
chronize again~Fig. 11!. This process is slower for the las
two cases. This is actually the cause of the slower con
gence of the parameter.

When the parameters of the control map were larger,
the dynamics of the control map was more irregular,

FIG. 9. Nonautonomous coupled maps with one controll
map,r (c)53.65. The value ofg was varied. For smaller values ofg
the system converges to the value of the control parameter o
controlling map. For larger values ofg the mean parameter starts
oscillate about the control value. Forg50.004 the system fails to
stabilize; the units are not synchronized.

FIG. 10. Nonautonomous coupled maps with one controll
map. Evolution in time of the mean value of the parameters of
maps. The mean value of the parameter converges to that o
control map. The parameter was changed every 30 000 itera
from r (c)53.6 tor (c)53.75 with a step of 0.05. The system follow
the changes of the parameter of the control map.a150.6, g
50.000 04.
-

r-

d
e

system was less synchronized and intermittently esca
from the control. This is illustrated for the case when t
parameter of the control map wasr 53.91. Figure 12 shows
the larger variation in the mean value of the parameters
the maps. It also shows the evolution of the standard de
tion from the mean value of the parameter. As can be se
the fluctuations in the standard deviation determine the va
of the mean parameter. The larger the standard deviation
lower is the value of the mean value of the parameter. Thi
due to the fact that the mean signal arriving at the driven
becomes distorted and the fine dynamical structure of

he

g
e
he
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FIG. 11. Nonautonomous coupled maps with one controll
map. Evolution of the standard deviation from the mean value
the iterate. As the parameter of the control map changes the u
desynchronize briefly but then synchronize again. These results
recorded from the same trial as Fig. 10. The inset magnifies the
of the main picture.a150.6, g50.000 04.

FIG. 12. Nonautonomous coupled maps with one controll
map,r (c)53.91. The system is not able to adjust the parameter
synchronize with the control map. The mean value of param
oscillates well below the transition point. The oscillations of t
mean value of the parameter, however, are highly correlated
the changes in the standard deviation from it.
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signal becomes lost. The signal becomes noisy and the v
of the Liapunov exponent decreases toward zero.

We also studied the behavior of the model in the prese
of noise. Those results are presented in Fig. 13. With
lower amount of noise the maps are able to synchronize
underestimate the Liapunov exponent and the param
When the noise level is large (anoise50.01) the maps fail to
fully synchronize and the parameter stabilizes around
transition point from periodic to chaotic behavior. The val
of the parameter at this point is shifted and is smaller th
for the case without noise. Those results are in agreem
with the results obtained earlier for the behavior of sin
logistic maps in the presence of noise, which shows that
periodic/chaotic transition takes place for lower values of
parameter~see@28#!.

IV. CONCLUSIONS

We showed that incorporation of two readout mechanis
applied locally on the post-connection element and acting
two different time scales leads to an adjustment of elem
properties and global synchronization in a coupled syste

In the example presented here, maps with different

FIG. 13. Nonautonomous coupled maps with one controll
map in the presence of noise,r (c)53.65. Evolution in time of the
mean value of the parameters of the maps. The noise level
varied between 0.01 and 0.000 01. The steps were equal to
order of magnitude. The synchronization of the system deterior
with the increasing noise. For a high noise levelanoise50.01 the
system is overridden by noise and the parameter converges t
period ic/chaotic dynamics transition point.a150.6, a250.02, g
50.000 04.
ett
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namical behavior resulting from different initial paramete
can synchronize to a state where the variables and pa
eters of each map are similar. This occurred when
changes in the parameters of the maps were driven by
mean field behavior of the rest of the system. The units of
system were coupled by a single coupling, via their itera
but employed two readout mechanisms. The first one wa
fast readout and it coupled directly, without delay, the it
ates of the maps. The second one was a slow readout w
coupled the temporal average of a macroscopic propert
the signal~the estimated value of the Liapunov exponents! to
the map’s parameter which in turn controlled the mac
scopic behavior of the map.

This synchronization occurred in autonomous syste
where the maps are only coupled to each other, as we
nonautonomous systems where the maps are also driven
central controlling map with fixed parameters. In the fi
case the dynamics of the system stabilizes on the trajec
determined by the averaged value of the parameter of all
units. In the second case of nonautonomous maps we sho
that the system can be effectively controlled by a single
ement. The degree of control depends on the parameters
thus the dynamical properties of the controlling map. F
some ranges of the parameter of the controlling map
entire system is strongly synchronized and for other ra
the entire system is intermittently synchronized. The syst
cannot adjust its parameter to that of the control map if
parameter of that map is in the periodic regime. This is d
to the fact that the macroscopic dynamical properties~mea-
sured here by the estimated Liapunov exponent! stop being a
monotonic function of the parameter in the periodic regim

This mechanism of control, where the parameters of u
are adjusted by a function that depends on the differe
between the Liapunov exponent of each unit and the
apunov exponent of the mean field of the system, may a
have applications to achieving synchronized control in m
general classes of parallel, distributed systems.

This scheme of control and synchronize maybe wid
used in information theory and in any other systems that
built of units that can adjust their dynamical properties
code or decode a pattern. A similar mechanism also m
play a role in brain function where it is known that chang
in cell properties can take place on different time scales
neurobiology a different readout mechanism can be imp
mented by activation of different ion channels and chan
in ion concentrations. It remains to be seen whether an
what extent biology takes advantage of such mechanism
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