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Self-organizing dynamics of coupled map systems
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We show that the feedback from the macroscopic dynamics of a system of coupled units can synchronize the
dynamics of these units. We studied the dynamics of maps coupled through their variables and control param-
eters. The feedback adjusted the values of the parameters of each map by using a function that depended on the
difference between the Liapunov exponent of each unit and the Liapunov exponent of the mean field of the
system. We showed that synchronization of the maps can be achieved under two different corjtwinsre
the maps interact autonomously without a fixed controlling map @hdvhere the maps interact nonauto-
mously with a single controlling map with fixed parameters. This method of feedback control may be useful in
controlling more general types of parallel distributed systdi8%063-651X99)01303-3

PACS numbdps): 05.45.Ra, 64.60.Cn

[. INTRODUCTION of the system to the mean signal arriving from other units
and employing two readout mechanisms on the receiving
Collective dynamics of self-organizing systems, whichunit can produce such self-organizing behavior. The first
are formed as large ensembles of coupled units, have beeaadout mechanism is a fast coupling of the iterates of the
studied widely (for example, see[1,2] and references receiving unit to the averaged signal coming from other
therein). One of the major problems in such self-organizingunits. It is a fast mechanism because it produces instanta-
systems is how the dynamics and interactions between mameous changes in the receiving unit based on the spatially
spatially distributed units synchronize to form large-scaleaveraged activity of the other elements in the system. The
spatiotemporal patterns. Such synchronized behavior hasecond readout mechanism is a much slower mechanism
been studied in many theoretical systems such as systemswhich is designed to integrate, in time, some property of the
coupled maps, Lorenz equations, oscillatf®s4], coupled incoming signal and induce slow changes in tin@croscopic
laser system§5] and neural networkg6—8|. Understanding dynamical properties of the receiving element. The interac-
the mechanisms that underlie such synchronization may helion of these two mechanisms produces self-organization in
to understand the spatiotemporal synchronization that hafe coupled system.
been found in the sensory cort¢®,10] and olfactory bulb The results presented in our paper can be used in infor-
[11]. It has been speculated that the synchronized activity immation theory and also may have an application in modeling
the brain is related to the binding problem, that is, the linkingbrain function. In the brain it is founj®22] that the activity of
together of percepts that are processed in different parts dhe neurons maybe modulated by slower acting channels and
the brain. resulting ion density within a cell(for example, me-
These issues of synchronization in spatially distributectabathiphic receptors or by altering the*Caconcentration
systems have been studied in systems of coupled maps whithat regulates ion channel activityr his would correspond to
consist of interacting units whose variables are iterated forimplementation of the slow readout mechanism. Changes in
ward in time. These systems were introduced by Kanekdon concentrations on a large time scébé the order of tens
[12,13, and have attracted rapidly growing attention in re-or hundreds of millisecondisnay lead to changes in dynami-
cent yeard14—18. They can generate spatiotemporal phe-cal properties of the cells and thus to a changed pattern of
nomena such as solitons, freezed random configurations, peeuronal spike firing—the short time scdlef the order of
riodic behavior, intermittency, or chapt9]. They have been milliseconds dynamics. The fast readout mechanism can be
used to model spatiotemporal intermittency in Rayleigh-viewed as implemented by the channels reacting rapidly to
Benard convectiofi20] and spiral waves in the Bielousow- the release on a neurotransmitter on the synapse and thus
Zabotirski reaction[21]. producing fast changes in the postsynaptic potential. Ex-
It is not clear, however, how synchronization of systemsamples of such channels are acetylcholine receptors, which
can be achieved when the dynamical properties of the unitgroduce rapid influx of N& ions during depolarization, or
in the system are not identical and can adjust in time taGGABA receptors, which produce influx of Clduring the
accommodate self-organizing processes. We present herehgiperpolarization. The interactions of the action potentials
model that shows that coupling the dynamics of a single unitmay in turn lead to the formation of the synchronized activ-
ity of the firing of many neurons.
The system studied here consists of logistic maps. In
*Permanent address: Centrum Fizyki Teoretycznej PAN, Al. Lot-terms of coupled maps, the dynamical properties of each unit
nikow 32/46, 02-784 Warsaw, Poland. depend on a parameter, which may be different for different
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units. The question then becomes, how can the parameters of X =f,(rD xy=pDxD(q —x(0y, (1)

these units be equalized to produce the same dynamical be-

havior? Depending on the value of the parameter, the dywherexe[0,1] andr €[0,4].

namics of one map may be periodic, whereas the dynamics The motivation for the following coupling is to make the

of the other map may be chaotic. dynamics of each map depend on its internal dynamics and
The maps were coupled together by having the variablegn the input from the average state of the rest of the maps:

of one map depend on the variables of the other maps. The

iterations of the maps and the dependency o_f the variat_)les pf f.r xD) + [y /(N— 1)]“2‘ fj(rgj) Xy
each map on the other maps form the fast time scale in this ;) _ L

system. We additionally coupled the maps by having the Xn+1”= 1+aq '
parameter of each map depend on a function of the variables 2

of the other maps. We determined the changes in the value of o ) )

the parameter of each map by computing the difference pavhere a; indicates the strength of the |'nte.ract|on between
tween the Liapunov exponent estimated from the iteration iffach map and the rest of the system, which is the same for all
time of that map and the Liapunov exponent estimated fronihe maps; the simulations described in the next section were
the average of the variables of the other maps iterated iRerformed fore;=0.6. _ ,

time. Essentially, this means that the dynamics of each map, '€ state of the map in the next time step is thus depen-
as determined by its parameter, is controlled by the macrodent on its previous state and the average state of the rest of
scopic dynamical properties of the other maps, which ighe maps. The value of the |t<_arate at_the given site is 'ghen
evaluated from their signal. This defines a slower time scal@0rmalized not to exceed 1. Single units act here as an inte-
at which the characteristic of each map responds to the ovefrator of the dynamics of whole system, and its evolution is
all dynamics of the system. It is worth stressing that in this® function of its own state and the state of other elements of
system units are coupled effectively by one coupling whichth® System. This maybe viewed as an approximation of a

transmits the value of the iterate at given time step. The unif€Uron, where the cell acts as an integrator of the depolariz-
at the receiving end integrates different properties of that"d and hyperpolarizing changes in potential, which are due

signal over different time scales and incorporates it into twd® changes in ionic density. , _
different driving mechanisms. We will show that when the parameter of a single map is

We studied the synchronization produced by this coupling?®UP!ed to the difference of the estimated Liapunov expo-
in (1) a system with autonomously interacting maps withoutN€nts betwee_n the mean field of the_ varlabl_es of other maps
a fixed controlling map an€®) a system with nonautomously and the map itself, .the maps can adjust their parameters and
interacting maps driven by a controlling map with fixed pa-then fully synchronize. . _ .
rameters. In both cases, even though the units start with dif- The two variables ) and x{)) evolve at different time
ferent dynamical properties, as determined by their paramscales. The parameter$) evolve much slower than the vari-
eters(ranging from periodic to chaoticthese systems reach ables xﬁ]’). The Liapunov exponents computed from each
stable synchronized patterns. In the second case, the contrehap and the mean field depend primarilyxdfi . Thus, the
ling map can also determine the properties of the pattern. slowly varying value of does not effect the computation of

Controlling the dynamics of a chaotic system is presentlythe Liapunov exponents.

a very active line of research and has wide applications in The Liapunov exponent for each map is computed from
different branches of science. Ott,_ Grebogi,. and Yorkene iterations of that max® uncoupled from the other
(O_GY) [23] showed how one can a}ch|eve chaotic control bymaps. That is, it is based on the evolution of

using a feedback mechanism acting on the control param-

eters of the system. Other aspects of control were studied X =rOx( (1 %)), 3
earlier in low-dimensional systeni84—26, where the per- ntLon o "

turbed system is driven to a fixed-point orbit. Since the mapshe Liapunov exponent is given by

to be controlled can have chaotic dynamics, the work pre-

sented here provides a new approach to controlling a chaotic R | N df, — ~)
system. A= |im N_Zl In a(r“),xj )| 4
In our previous worl{27] we studied how synchroniza- N—eo 1=

tion depends on the feedback between the variables and t
parameters of the units and showed how one map can b
used to control another maj27]. We now extend that

. . . 1 ) )
method of control to many interacting maps. hﬂ):m > i xy. (5)
—djj#Fi

e mean fielch{) ; at time stepn is given by

The Liapunov exponent for the mean field is given by
Il. DESCRIPTION OF THE MODEL

N
The system we studied consists =50 units, each of AMOO) = [im EE In
which is a logistic map. The dynamical properties of each =1
map are determined by its paramat8t, which initially may

be different for each map The variable of each mag" is We approximate the Liapunov exponents for each map
iterated forward to time step+1 by and the mean field by using the running sum

fi —
%(r“%hf”)‘. ®)

N—
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_Rﬁi)+a2|n|dfi/dx| 3.80

At T, ()

a»,=0.02 was set during the simulations. We then define the

function A used to control the dynamics ofas
3.70 —
A()\gs)(l) ')\gmf)(l)) :(|)\E15)(|)_ )\Emf)(l)|)1/4

xsgra PO\ M0). ()

The function AAOO \MID) could have different
forms. We chose the shape of this function to ensure that
there are large changes # for small differences between M/’MM__
A and A (MY and small changes iA for large differences
between\ (¥ and\{™" . This ensures that the parameters of
the map change when the map is not synchronized to the
mean field, but the changes are kept small when it is too far 350 . T T T T I T
out of synchronization to prevent excessive overshooting of 0 10000 20000 30000 40000
the parameter required for synchronization. lterations

The control method adjusts the parameter of each map by _ i
the following: FIG. 1. Autonomous coupled mapsithout a controlling map

Evolution in time of the mean value of the parameters of the maps.
r(nlJ)rl:r(nl)Jr VA(?\%S)(') =)\§1mf>(l))= 9) As_, the (50) maps synch_ronlze, thg mean value stablll_zes and then
drifts only slowly over time. The initial values of the iterates and
wherey is a constant much less than unity. During the simu-Parameters were picked at randomy;=0.6, a,=0.02, y
lations y=0.000 04. =0.00004.
Additionally, when the parameter of any element in-
creased to the valué"=4.0 it was reinjected at the low end  Figure 2 shows tha$, decreased rapidly in time, indicat-
value ofr?=3.1, and conversely, if the parameter of anying that the maps quickly evolved toward a synchronized
element decreased’<3.0, it was reinjected at the value of state. Thus, when there is no external control, the maps con-
rV=3.98. verged to the averaged dynamical state of the system as a
This definition of fast and slow detection mechanisms inwhole.
the system allows a large separation of the time scales. The we also tested the behavior of the model adding different

first mechanism is an instantaneous reaction of a given ungmounts of noise into the system. The equations took the
to the actions of the others. The second one acts as a tempgym

ral integrator of the dynamical properties of the system. Thus
the same signal integrated on different time scales can act as
a driving signal and as a control mechanism.

3.60 —

Mean value of the parameter

Ill. RESULTS 0.020 —

We studied the behavior of this system for two casik:
autonomously interacting maps without a fixed controlling
map and(2) nonautonomously interacting maps driven by
one controlling map with fixed parameters. In both cases,
even though the maps start with different parameters and2 091
thus different dynamical properti€sanging from periodicto ~ §
chaotig, the maps reach stable synchronized patterns. In theg

second case, the controlling map determined the propertiesg
of the pattern.
0.000 —

A. Autonomously interacting maps

mean value of the iterate

Standard de

In the first set of simulations, there were 50 maps coupled

to each other, but no controlling map with fixed parameters. e e et 1
e . (] 10000 20000 30000 40000

The initial values of the variables and parameters were cho- .
sen from a uniform distribution over their ranges. Figure 1 lterations
shows the evolution of the mean value of the parameters of FG, 2. Autonomous coupled mapsithout a controlling map
all the maps. This mean value fluctuated at the beginning angyolution in time of the standard deviation from the mean value of
then changed slowly over time. The fluctuations in the patthe iterate. The difference decreases rapidly in time indicating that
tern were measured b, , the standard deviation from the the maps quickly evolve toward synchronized behavior. These re-
mean value of the averaged iterate. sults are recorded from the same trial as Fig. 1.
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FIG. 3. Behavior of the autonomous maps in the presence of FIG. 5. Nonautonomous coupled maps with one controlling map
noise. The evolution of the mean value of the parameter is prewith fixed parameter(®=3.4. Evolution in time of the mean value
sented. The system is dominated by noise and the parameter stabf the parameters of the maps. The parameter converges to the
lizes at the periodic/chaotic transition point. The transition point ischaotic/periodic dynamics transition poift; =0.6, y=0.000 04.
lower than for noiseless system as expected. The amplitude of
noise,angise= 0.01. Other parameters are as in Fig. 1. degree of synchronization is less with a higher amplitude of

noise. With the addition of noise, the system tends to syn-
0 (i) B i o chronize on a less complex trajeqc(xyne with th(_e smaller
fi(ry’ . xn") +[ay /(N 1)]'2# fi(ra’ . xn’) +e Liapunov exponent When the noise level is higknoise
X\ = I = , amplitude a,qise= 0.01) the system always stabilizes at the
ot transition point from periodic to chaotic regime. This is due
(10 to the fact that for,ise=0.01 the system dynamics starts to

. . . . _be dominated by noise and the Liapunov exponent tends to
where g; are random variables. This way of incorporating ;o \which is the value at the transition point.

noise in the system should be viewed as noise in coupling
between the units, rather then as noise in the units them-
selves. These results are presented in Figs. 3 and 4. The

B. Nonautonomously interacting maps driven
by one controlling map

0.025 In the second set of simulations, there were 50 maps
coupled to each other and to one control map with a fixed
parameter. The initial values of the variables and parameters
0.020 — (of the autonomous mapw/ere again chosen at random from

a uniform distribution over their ranges. The control map
. represents a stable external input or forcing into the system.
These simulations explored the ability of the controlling map
to synchronize the dynamics of the entire system on a spe-
4 cific trajectory. We found that the controlling map could syn-
chronize the system only over certain ranges of its parameter
0.010 — and that this control was also sometimes intermittent.

When the parameter value of the control maps is set be-
low the value that defines transition from periodic to chaotic
0.005 —| behaviorr,<3.56 the maps with unconstrained behavior
can synchronize between themselves but cannot synchronize
with the control map. Those results are presented for the case
whenr,=3.4 in Figs. 5 and 6. Figure 5 presents the evo-
lution of mean value of the parameter, while Fig. 6 shows the
changes of standard deviation from the mean value of the
iterates. The mean value of the parameter of the uncon-

FIG. 4. Behavior of the autonomous maps in the presence oftrained maps stabilizes around the periodic/chaotic regime
noise. Presents the evolution of standard deviation from the meaf{ansition point. This is due to the fact that below the transi-
value of the iterate. The elements do not synchronize fully. Theséion value the Liapunov exponent stops being a monotonic
results are recorded from the same trial as Fig. 3. function of the parameter {) for the elements. The above-

0.016 —

Standard deviation from mean value of the iterate

0.000 —
0 10000 20000 30000 40000

Iterations



2834 MICHAL ZOCHOWSKI AND LARRY S. LIEBOVITCH PRE 59

0.03 3.80
b1
o p
b
L
=
5 0.02 —
S
© 3.70 —
> - @
b H]
2 g
£ =
]
g 0.01 — - -
£ £
2 &
= n o
=
k=t 3.60 —
<
3
S 0.00 —
e
< -
2
< T mean parameter
® = = = control parameter
-0.01 T T T T I T T 3.50 T T T T T T T T T
0 20000 40000 60000 0 20000 40000 60000 80000 100000
Iterations Iterations

FIG. 6. Nonautonomous coupled maps with one controlling map FIG. 7. Nonautonomous coupled maps with one controlling map
with fixed parameter(®)=3.4. Evolution of the standard deviation with fixed parameter(®=3.75. Evolution in time of the mean
from the mean value of the iterate. The standard deviation tends tealue of the parameters of the maps. The mean value of the param-
zero—the maps synchronize. These results are recorded from tteger converges to that of the control mag.=0.6, y=0.000 04.
same trial as Fig. 5.

We also tested whether the model can adjust its final state
mentioned limit applies, however, only to the values of theto the changes in the external stimulus. Those changes were
parameter of the control map. The parameter values for urinduced by changing the parameter value of the control map
constrained maps can take any value. Within the periodieluring the simulation. The parameter of the control map was
regime the largest value of the Liapunov exponent takes thehanged every 30000 iterations from=3.6 to r
value of zero at the bifurcation points which is smaller than=3.75 with a step of 0.05. The system follows the changes
any positive value of the exponent in the chaotic regimesof the parameter the control map. The convergence, how-
Thus the control scheme is working properly. ever, becomes slower with larger values of the control pa-

When the parameter of the control map was larger thamameter (Fig. 10. As the parameter of the control map
the transition value and belowy,<3.76, the maps synchro-
nized with each other, adjusted their parameter values to the 0.03
control map, and synchronized with it. Figure 7 shows re- 0.0002
sults of the simulation for this case. The value of the control
parameter was set 1q.=3.75. The mean value of the pa-
rameters of the maps approached a nearly constant value
equal to that of the parameter of the control map. Figure 8
shows that the standard deviation decreased rapidly in time,
indicating that the maps are synchronized.

The parameter range for which system could be effec-
tively controlled and synchronized depended on the value of
y—the constant determining the size of the changesibf
With a smaller gamma the mean value of the parameter of :
autonomous maps converged slower g, but the range of
the values for which it converged was substantially in-
creased. Figure 9 presents the evolution of the mean param-
eter for three different values of. The parameter value of
the control map was set tq.)=3.65. Fory=0.00004 the
system converges to the value of the control parameter. For
vy=0.0004 the system also converges to the value of the
control parameter but fluctuates around it noticeably. for lteration

=0.004 the system does not converge and stabilizes at some g, 8. Nonautonomous coupled maps with one controlling map
random value. This maybe due to the fact that the controlith fixed parameter(® =3.75. Evolution of the standard deviation
parameter is overshot for many elements repeatedly, and al$@m the mean value of the iterate. The standard deviation tends to
to the fact that the approximation of the Liapunov exponentzero—the maps synchronize. These results are recorded from the
may start to fail due to the faster changes in the parametefame trial as Fig. 7. The inset magnifies the part of the main picture.
value. a1=0.6, y=0.000 04.

0.02 —

0.0000
- I T T T T T T
20000 40000 60000 80000

0.01 —

N

tion of the mean value of the iterate

1a
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-0.01
| ' I ' I
40000 80000
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0.0004
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— - 0.004
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3.20 — .
———— 90 -

3.00 T T T T T T T T T T T I T
0 20000 40000 60000 0 30000 60000 90000 120000

Standard deviation from the mean value of the iterate

Iterations lterations

FIG. 9. Nonautonomous coupled maps with one controling FIG. 11. Nonautonomous coupled maps with one controlling
map,r(©=23.65. The value ofy was varied. For smaller values 9f  map. Evolution of the standard deviation from the mean value of
the system converges to the value of the control parameter of thihe iterate. As the parameter of the control map changes the units
controlling map. For larger values gfthe mean parameter starts to desynchronize briefly but then synchronize again. These results are
oscillate about the control value. For=0.004 the system fails to recorded from the same trial as Fig. 10. The inset magnifies the part
stabilize; the units are not synchronized. of the main picturea;=0.6, y=0.000 04.

changes the units desynchronize briefly but then quickly syn§yStem was less_synchronized and intermittently escaped

chronize agair(Fig. 11). This process is slower for the last from the control. This is illustrated for the case when the

S arameter of the control map was-3.91. Figure 12 shows
two cases. This is actually the cause of the slower conver; A
the larger variation in the mean value of the parameters of
gence of the parameter.

When the parameters of the control map were larger, analwe maps. It also shows the evolution of the standard devia-

. . on from the mean value of the parameter. As can be seen,
the dynamics of the control map was more irregular, thethe fluctuations in the standard deviation determine the value

+o0 of the mean parameter. The larger the standard deviation, the

lower is the value of the mean value of the parameter. This is
due to the fact that the mean signal arriving at the driven site
] becomes distorted and the fine dynamical structure of the
3.80 — 3.75 0.0020
k)
N [~ [}
e - 5
‘_§ 3.70 — |— 0.0015 §
2 370 — N 5
g 3 - - E
s @ @
@ £ =
o . g
3 3.65 — [— 0.0010 g
3 =
3.60 — D . n 8
= =
>
@@
i 3.60 — [— 0.0005 ©
mean parameter g
= = = control parameter _ | 2
— 3d from mean parameter «©
3.50 T T T T T mean parameter @
0 40000 80000 120000 3.55 T T T T 0.0000
lteration 0 40000 80000
lterations

FIG. 10. Nonautonomous coupled maps with one controlling
map. Evolution in time of the mean value of the parameters of the FIG. 12. Nonautonomous coupled maps with one controlling
maps. The mean value of the parameter converges to that of thmap,r(©=3.91. The system is not able to adjust the parameter and
control map. The parameter was changed every 30000 iteratiorsynchronize with the control map. The mean value of parameter
from r ) =3.6 tor )= 3.75 with a step of 0.05. The system follows oscillates well below the transition point. The oscillations of the
the changes of the parameter of the control map=0.6, y mean value of the parameter, however, are highly correlated with
=0.000 04. the changes in the standard deviation from it.
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3.70 namical behavior resulting from different initial parameters
can synchronize to a state where the variables and param-
eters of each map are similar. This occurred when the
865 —fm — v e = e — =, changes in the parameters of the maps were driven by the
mean field behavior of the rest of the system. The units of the
system were coupled by a single coupling, via their iterates,
but employed two readout mechanisms. The first one was a
fast readout and it coupled directly, without delay, the iter-
Noise level ates of the maps. The second one was a slow readout which
0.00001 coupled the temporal average of a macroscopic property of
.. - - - oo the signalthe estimated value of the Liapunov expongits
i hN —o the map’s parameter which in turn controlled the macro-
N . controlvalue scopic behavior of the map.
8.50 = This synchronization occurred in autonomous systems
where the maps are only coupled to each other, as well as
T . nonautonomous systems where the maps are also driven by a
3.45 r I r I r I r central controlling map with fixed parameters. In the first
0 10000 20000 30000 40000 case the dynamics of the system stabilizes on the trajectory

determined by the averaged value of the parameter of all the
units. In the second case of nhonautonomous maps we showed

FIG. 13. Nonautonomous coupled maps with one controllingthat the system can be effectively controlled by a single el-
map in the presence of noise)=3.65. Evolution in time of the  ement. The degree of control depends on the parameters and
mean value of the parameters of the maps. The noise level wag s the dynamical properties of the controlling map. For
varied between 0.01 and 0.00001. The steps were equal to ongme ranges of the parameter of the controlling map the
or_der of r_nagnitu_de. Th_e synchroniz_ation gf the system deteriorateémire system is strongly synchronized and for other range
with the increasing noise. For a high noise leagli=0.01 the o aniire system is intermittently synchronized. The system
system Is overr idden by. noise a.n.d the parameter converges to " nnot adjust its parameter to that of the control map if the
Ee(;nggécézhaotlc dynamics transition point;=0.6, «;=0.02, v = 53 meter of that map is in the periodic regime. This is due
e ' to the fact that the macroscopic dynamical propertraea-

) ) , sured here by the estimated Liapunov exponstup being a
signal becomes lost. The signal becomes noisy and the valyg,notonic function of the parameter in the periodic regime.
of the Liapunov exponent decreases toward zero. This mechanism of control, where the parameters of units

We also studied the behavior of the model in the presencg,e 5gjusted by a function that depends on the difference
of noise. Those results are presented in Fig. 13. With th@atween the Liapunov exponent of each unit and the Li-
lower am_ount of nois_e the maps are able to synchronize bL&punov exponent of the mean field of the system, may also
underestimate the Liapunov exponent and the parametefgye applications to achieving synchronized control in more
When the noise level is larg@{oise=0.01) the maps fail to genera| classes of parallel, distributed systems.
fully synchronize and the parameter stabilizes around thé Tphis scheme of control and synchronize maybe widely
transition point from periodic to chaotic behavior. The value seq in information theory and in any other systems that are
of the parameter at this point is shifted and is smaller thar it of units that can adjust their dynamical properties to
for the case without noise. Those results are in agreemeRbge or decode a pattern. A similar mechanism also may
witr_] t.he resul_ts obtained earlier fo_r the b_ehavior of singlep|ay a role in brain function where it is known that changes
logistic maps in the presence of noise, which shows that thg, ce|| properties can take place on different time scales. In

periodic/chaotic transition takes place for lower values of theheurobiology a different readout mechanism can be imple-

.....................

Mean value of parameter
1

S e

lterations

parametelsee[28]). mented by activation of different ion channels and changes
in ion concentrations. It remains to be seen whether and to
IV. CONCLUSIONS what extent biology takes advantage of such mechanisms.
We showed that incorporation of two readout mechanisms ACKNOWLEDGMENTS
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